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SUMMARY

A histochemical and ultrastructural investigation of the cel-
lular inflammatory response within the intestines of tench
Tinca tinca L. naturally infected with the caryophyllidean
cestode Monobothrium wageneri was conducted and the
data obtained compared to those in uninfected counterparts.
Cestode infections within the intestines were evident through
the appearance of raised inflammatory swellings induced by
the deep penetration of their scolices into the intestinal wall.
Cestodes typically attached in tight clusters, inducing a mas-
sive hyperplastic granulocyte response of mast cells and neu-
trophils, which were significantly more numerous (P < 0Æ01)
in the intestines of infected (n = 14) than of uninfected
(n = 9) tench. Neutrophils were more abundant than mast
cells (P < 0Æ01) in host tissues in close proximity to the
parasite tegument. In transmission electron microscopy sec-
tions, mast cells and neutrophils were frequently observed in
contact with or inside capillaries, and in close proximity to
the cestode. Degranulation of both cell types was seen in the
submucosa and lamina muscularis, notably in the immedi-
ate tissues surrounding the scolex of M. wageneri. No tegu-
mental secretions were seen at the host–parasite interface.
Occasional rodlet cells were encountered in the submucosa
of infected fish.
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INTRODUCTION

Although several caryophyllidean cestodes are recorded
from tench, Tinca tinca (L.), only Monobothrium wage-

neri Nybelin, 1922 is known to be specific to this host
within Europe (1). Yet despite its wide geographical
range and its popularity as a species with coarse anglers,
the pathological effects of their cestodes have received
very little or no attention. Although M. wageneri has
been reported as being nonpathogenic (2), caryophyllaeid
cestodes affect their hosts in three ways: by blocking the
intestinal tract, through the production of lesions induc-
ing a marked inflammatory response at their site of
attachment and by disrupting the physiological balance
of the host (3,4).

The alimentary canal represents one of a few major
entry points for pathogens and parasitic infection (5), and
that of teleosts, as in other vertebrates, possesses an effec-
tive local immune system (6), with well-developed physical
and chemical barriers used in combination with an effec-
tive mucosal immune system (6). Most protozoan and
helminths exert their effects on intestinal tissue either
through their adhesion to it or their penetration through
it (7). Parasitic infections can induce several alterations to
the host immune response, frequently provoking an
inflammatory response resulting in variable numbers and
types of leucocytes subsequently being observed in the epi-
thelium and lamina propria of host tissue (5,8–10). Inflam-
mation is a very important mediator of resistance because
of its rapid and broad efficacy in clearing infection, and
the majority of immune responses begin with the induc-
tion and propagation of inflammation by a series of posi-
tive-feedback loops (11).

Under normal conditions, fish maintain a healthy state
by defending themselves against pathogens, using a com-
plex system of innate defence mechanisms (12). In fish,
these innate defences in response to helminth infection are
associated with inflammatory reactions (5) that are most
frequently elicited by the migrating stages of the parasite
(13). Innate immunity is the first line of defence against
infection, directing the type of response that the adaptive
immune system makes (14,15). The innate immune system
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of fish comprises the following: (i) cytotoxic (i.e. natural
killer) or phagocytic (i.e. macrophages and granulocytes)
cells, (ii) proteins that mediate the responses (e.g. comple-
ment) to helminth infection that subsequently initiates the
inflammatory response or the release of cytokines to con-
trol specific cellular components and (iii) the use of physi-
cal and chemical barriers to minimize the likelihood of
parasitic infection (e.g. epithelial barriers and antimicro-
bial peptides) (14). Evidence for the involvement of granu-
locytes, that is, mast cells (MCs) (16–18) and neutrophils
(15,19,20), in the immune system of fish is growing where
they have been reported to play a critical role in the
defence against pathogens (21,22).

MCs, or eosinophilic granule cells (23), which have been
reported from all vertebrate groups, commonly occur in the
connective tissues of the alimentary canal and the respira-
tory, urinary, tegumentary and reproductive systems of
most fish species (23,24). Given the similarities in the loca-
tion, structural, functional and cytochemical properties of
fish MCs, it has been proposed that they are analogous to
those of mammalian MCs (23,25). Given the body of evi-
dence now available, it is now widely accepted that MCs
have a role in the immune response of fish (16,18,26,27).
MCs are motile and their distribution and abundance
change in response to the pathogen that is attempting to
infect the host (8,17,23,28). At the site of parasitic infection,
these cells release their contents that include various trypta-
ses, lysosyme, piscidin and antimicrobial peptides (6,25);
their degranulation in response to the presence of parasites
having been reported in several recent studies (29,30).

It has been suggested that the secretions produced by
MCs may have a role in attracting other types of granulo-
cytes such as neutrophils, which are among the first cell
types to arrive at the sites of inflammation and are a criti-
cal component of the teleost innate immune defence sys-
tem (31). Neutrophils are involved in the inflammatory
process, especially during the period of initial pathogen
challenge (22,32), migrating to and accumulating at the
site of parasitic infection or injury (5), their number
increasing in response to the parasitic infection (33,34).
Fish neutrophils have been shown to phagocytize small
foreign particles (8) and to degranulate in close proximity
to parasites, releasing the contents (11,34, current study).

Rodlet cells (RCs) are a type of an inflammatory cell
that are closely linked to other piscine inflammatory cells,
such as MCs (23), mesothelial and epithelioid cells (23).
RCs are commonly associated with epithelia, for example
intestine, and the general consensus among researchers is
that they have an important role in host defence (23,35).
Interestingly, in infected tench, RCs have been frequently
observed distributed among MCs and neutrophils within
the submucosal layer of the intestine (4).

Cestodes possess a diverse range of glands within their
scolices, the secretions of which have an array of different
functions and effects on their hosts (36,37). Many of these
secretions are histolytic in nature (38), protecting the tape-
worm from the host’s immune response (37). The noted
increase in the number of host neutrophils and MCs at
the site of M. wageneri infection in T. tinca (4) and the
intense degranulation of both cell types in close proximity
to the cestode’s tegument prompted a further study and
comparative survey of un- and infected hosts. Findings
from this study provide evidence for the role of the
immune system of T. tinca in the modulation of the
inflammatory response to a M. wageneri infection.

MATERIALS AND METHODS

Twenty-three tench from Lake Piediluco (Province of
Terni, Central Italy 42� 31¢ 01¢¢ N; 12� 45¢ 00¢¢ E) were
caught by professional fishermen belonging to the Piedi-
luco Fish Consortium using a gill net that was deployed
on two occasions (April and July 2011). The tench were
transferred alive to the Consortium’s facility where they
were subsequently euthanized using 125 mg ⁄ L MS222 (tri-
caine methanesulfonate, Sandoz, Basel, Switzerland) and
their spinal cords severed before being lengthed,
47Æ2 € 3Æ9 cm (mean total length € SD), and weighed,
1745Æ7 € 435Æ3 g (mean weight € SD). The tench were dis-
sected and sexed before the digestive tract from each was
removed and opened longitudinally in search of helminths.
For tapeworms found still attached to the intestine, their
position was registered before a 15 · 15 mm piece of tis-
sue that surrounded the site of attachment was excised
and then fixed in either chilled (4�C) bouins or in 10%
neutral buffered formalin for 24 h. The bouin fixed mate-
rial was subsequently rinsed in several changes of 4�C
70% ethanol before being stored in the same medium until
processed for histology. After fixation, the tissues were
dehydrated through an alcohol series and then paraffin
wax embedded using a Shandon Citadel 2000 Tissue Pro-
cessor (Shandon Citadel 2000, London, UK). After block-
ing out, 5-lm-thick sections were cut and then stained
with haematoxylin and eosin and ⁄ or alcian blue 8 GX pH
2Æ5 and periodic acid Schiff’s reagent (AB ⁄ PAS). Multiple
histological sections were taken from each tissue block,
examined and photographed using a Nikon Microscope
ECLIPSE 80i (Nikon, Tokyo, Japan).

For transmission electron microscopy (TEM), 7 · 7 mm
pieces of infected intestinal tissue were fixed in chilled
2Æ5% glutaraldehyde in 0Æ1 M sodium cacodylate buffer for
3 h. The fixed tissues were then post-fixed in 1% osmium
tetroxide for 2 h and then rinsed and stored in 0Æ1 M

sodium cacodylate buffer containing 6% sucrose for 12 h.
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Thereafter, the pieces of tissue were dehydrated through a
graded acetone series and embedded in epoxy resin (Dur-
cupan ACM, Fluka). Semi-thin sections (1Æ5 lm) were cut
on a Reichert Om U 2 ultra microtome and stained with
toluidine blue. Ultra-thin sections (90 nm) were stained
with 4% uranyl acetate solution in 50% ethanol and
Reynold’s lead citrate and then examined using an Hitachi
H-800 transmission electron microscope (Hitachi H-800,
Tokyo, Japan). For each method, corresponding pieces of
uninfected intestine were also processed, so that a direct
comparison with the infected material could be made.

For comparative purposes, the number of granulocytes
in an area measuring 30 000 lm2 was determined using a
Nikon Microscope ECLIPSE 80i and computerized image
analysis software (Nis Elements AR 3.0) in 10 separate
zones on each section of infected fish (i.e. in the submucosa
layer close to the site of cestode attachment) and in 10 sepa-
rate areas on each section of uninfected fish material.

Granulocyte subsets (i.e. neutrophils and mast cells) were
identified on subcellular features observed using transmis-
sion electron microscopy. Neutrophilic granulocytes contain
granules with an electron-dense rod-like structure, while
mast cells typically contain spherical granules of various
diameters, with contents of differing electron densities (see
the results section for a further description of each cell type).

Using TEM, the number of neutrophils and MCs were
counted on two intestinal grids for each infected fish. The
number of each type of granulocyte was determined in an
area measuring 1800 lm2 in close proximity to the point
of cestode attachment (i.e. the interface region) and in a
second area measuring 1800 lm2 at a distance of approxi-
mately 200 lm from the site of cestode attachment.

Prior to analysis, the Gaussian distributions (i.e. normal-
ity) and the homogeneity of variances of the data were
assessed; the data were subsequently square root trans-
formed to meet these assumptions. Using the software pack-
age Statistica 7, ANOVAs (Statistica 7, Praha, Cech Republic)
were performed to detect significant differences in the num-
ber of granulocytes determined from the uninfected and
infected tench and in the abundance of neutrophils and
MCs at the point of cestode attachment and then at a dis-
tance of 200 lm away. Bonferroni post hoc tests and a
P < 0Æ01 level of significance were used throughout.

RESULTS

Light microscopy

Fourteen (60Æ9%) of the 23 tench were parasitized with
M. wageneri; identity of the cestodes was confirmed using
morphology and standard taxonomic keys. The intensity
of infection ranged from 3 to 130 worms per host

(39Æ5 € 47Æ7, mean € SD). The anterior part of the intes-
tine bore the heaviest infections with the vast majority of
tapeworms still attached with their scolices embedded
within the intestinal wall (Figure 1a). Upon dissection
in situ, M. wageneri were noticed in groups of variable
numbers and in some portion of the host intestine the pre-
sence of more than one foci was frequent (Figure 1a). In
tench gut wall, at the site of M. wageneri attachment, a
raised plaque-like formation or round nodule encircled the
firmly attached scolex (Figure 1b).

Histological sections revealed that specimen of
M. wageneri had penetrated by means of bluntly truncated
scolex deep into the mucosa and submucosa (Figure 2a, b)
and in some instances into the muscularis layer (Figure
2c). This parasite anchoring system provided a secure
attachment to the tench intestine (Figures 1a, b and 2b).

At the site of attachment, the tapeworms induced necro-
sis, degeneration and ⁄ or loss of the epithelium (Figure 2a).
M. wageneri elicited intense immune cells and fibroblasts
proliferation within the thickness of the tench gut wall

(a)

(b)

Figure 1 (a) A heavy infection of Monobothrium wageneri com-
prising over hundred specimens in two clusters (arrows) in the
anterior intestine of tench, Tinca tinca; scale bar = 12 mm. (b)
Attachment of M. wageneri results in a local, plaque-like
formation or round nodule. Note the pronounced inflammatory
response (arrows) surrounding the scolices; scale bar = 5 mm.
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(Figure 2b, c). Diffuse hyperplastic inflammation was
noticed in tench with few M. wageneri as well as in those
harbouring numerous tapeworms (Figure 2a–c). Within
the submucosa layer, beneath the point of M. wageneri sco-
lex insertion, numerous granulocytes (e.g. neutrophils,
MCs) (Figure 2d), rodlet cells (Figure 2e) and collagenous
fibres were observed. Degranulation of the granulocytes,
which was visible by light microscopy (Figure 2d), was

common in the submucosa. Parasitized intestines were
determined to have a significantly higher number of granu-
locytes than those that were uninfected (Table 1; ANOVA,
P < 0Æ01).

In situ, cestode-infected areas of the intestine were cov-
ered ⁄ surrounded by a yellowish catarrh. In histological
sections, the occurrence of numerous alcian blue–positive
mucous cells was observed among the intestinal epithelial

(a) (b)

(c) (d)

(e)

Figure 2 (a) Transverse section through the intestine of a tench, Tinca tinca, infected with Monobothrium wageneri. There is a marked lack
of epithelia at the site of parasite attachment and an intense inflammatory response (curved arrows) surrounding the scolices. Note the
presence of intact epithelia (arrows) in close proximity to the parasite induced nodule; scale bar = 200 lm. (b) Anterior intestine of a tench
infected with several M. wageneri. Deep penetration of the scolices (asterisks) and necks of the tapeworms can be seen. M = muscularis;
scale bar = 200 lm. (c) Focal attachment of M. wageneri. An intense host cellular response (curved arrows) penetrating the intestine as far
as the muscularis and surrounding the cestode scolices (asterisks) can be seen. M = muscularis; scale bar = 200 lm. (d) Scolex of M. wage-
neri (asterisk) is encircled by several granulocytes (curved arrows); scale bar = 10 lm. (e) Within the submucosa, the scolex is surrounded
by numerous granulocytes (arrows). In addition, several rodlet cells (arrow heads) can be seen inside the capillaries or scattered among the
granulocytes and collagenous fibres; scale bar = 20 lm.
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cells of infected fish notably within the epithelia in close
proximity to the nodule (Figure 2a).

Transmission electron microscopy

RCs in variable numbers (Figure 3a) were seen among the
epithelia of both M. wageneri-infected tench (i.e. in close
proximity to the point of cestode attachment and at a dis-
tance) and in uninfected specimens. Interestingly, within
the parasitized intestines, RCs were found to co-occur with
granulocytes within the submucosa of the nodule (Fig-
ure 3b) and in close proximity to blood vessels and ⁄ or
within the capillaries.

The inflammatory swellings surrounding the M. wage-
neri primarily consisted of fibroblasts but also included a
large number of neutrophils and MCs. Neutrophils (Fig-
ure 3c) and MCs were seen within the connective tissue
surrounding capillaries and within the blood vessels within
the submucosa and muscularis layer. In some intestinal sec-
tions taken from infected tench, neutrophils were also
observed within the epithelia (not shown). Neutrophils
appeared round to oval in shape although their outline
was commonly irregular (Figure 3c). These cells also con-
tained a round nucleus and a cytoplasm that contained
dark, elongated granules that were fibrous in appearance
(Figure 3c). Very few mitochondria and fragments of

Table 1 Granulocytes, mast cells and neutrophils densities in the intestines of Monobothrium wageneri-infected Tinca tinca and in
uninfected conspecifics. Granulocyte density is expressed as the mean number of both mast cells and neutrophils € 1 SD in 30 000 lm2 of
tissue; the mast cell and neutrophil densities are expressed as the mean number of each cell type € 1SD in 1800 lm2 of tissue

Cell
parameter

Uninfected
fish (n = 9)

Infected fish at the
point of cestode
attachment (n = 14)

Infected fish 200 lm away
from the point of cestode
attachment (n = 14)

Granulocytes (mast cells
and neutrophils) density

75 € 19a 151 € 53b

Mast cells density 4Æ1 € 1Æ4a 12Æ9 € 4Æ0b

Neutrophils density 13Æ8 € 4Æ7a 4Æ2 € 2Æ0b

Different superscript letters in the same line indicate significant differences (anova, P < 0Æ01).

(a) (b)

(c) (d)

Figure 3 (a) TEM micrograph shows two rodlet cells (arrow heads) and two mast cells (arrows) within the intestinal epithelium of a tench
infected with Monobothrium wageneri; scale bar = 4Æ2 lm. (b) Neutrophils (curved arrows), mast cells (arrows) and rodlet cells (arrow
heads) are evident within the connective tissue of the submucosa at a distance from the parasite; scale bar = 5Æ6 lm. (c) Neutrophils inside
a blood vessel within the intestinal submucosa of an infected host. Note the aspect of the nuclei and the dark, elongated granules inside the
cytoplasm; scale bar = 2Æ0 lm. (d) Micrograph shows a mast cell within the cestode induced nodule. Note the irregular outline of the cell,
the eccentric nucleus and the electron-dense granules within the cytoplasm; scale bar = 1Æ0 lm.
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rough endoplasmic reticulum were observed in the cyto-
plasm of the neutrophils.

The MCs, which were frequently observed within the
epithelia of infected hosts (Figure 3a), were irregular in
shape with an eccentric, polar nucleus, and a cytoplasm
characterized by numerous large, electron-dense, mem-
brane-bounded granules (Figure 3d). The cytoplasm typi-
cally contained two to three mitochondria and an
inconspicuous Golgi apparatus. Accurate counts of MCs
and neutrophils were obtained from two intestinal grids
from each infected fish. Neutrophils were found to be
numerous within the nodule, in close proximity to the teg-
ument of the cestode, but their number was seen to
decrease towards the periphery of the nodule. Neutrophils
were significantly more abundant than MCs (Table 1; ANO-

VA, P < 0Æ01) in host tissue close to the point of cestode
attachment. At a distance of 200 lm from the site of para-
site attachment, however, the number of neutrophils was
significantly lower than the MCs (Table 1; ANOVA,
P < 0Æ01). There were significant differences in the number
of neutrophils in close proximity to and at a distance of
200 lm from the point of cestode attachment (Table 1;
ANOVA, P < 0Æ01). Likewise, there were significant differ-
ences in the number of MCs at the site of infection and
200 lm away (Table 1; ANOVA, P < 0Æ01).

Commonly, the neutrophils and MCs adjacent to the
M. wageneri scolex tegument had a cytoplasm that
appeared vacuolized (Figure 4a) and contained very few
organelles. These were quite unlike the same cell types
observed in zones further away from the body of the cestode
(e.g. Figure 3b). The degranulation of MCs and neutrophils
was characterized by free granules that were frequently seen
close to the capilliform filitriches (Figure 4b) or adjacent to
and ⁄ or between the coniform spinitriches of the scolex (Fig-
ure 4b) (see 39 for cestode microtriche terminology). In
some grids, because of the plane of the section, the free
granules from neutrophils and MCs were found in contact
with the scolex tegument (respectively, Figure 4c,d).

Several glandular cytons within the syncytial tegument
along the anterior and lateral parts of the M. wageneri
scolex were observed (not shown). No discharge from
these glands or the presence of an adhesive layer in the
interface region between the tench intestine and the tape-
worm was evident.

DISCUSSION

Cyprinids are the main group of freshwater fish that have
a global importance as a source of food in many countries.
The study of disease in cyprinids held in captivity and in

(a) (b)

(c) (d)

Figure 4 (a) Neutrophils (arrow heads) and mast cells (arrows) adjacent to the scolex tegument of Monobothrium wageneri (asterisk). The
cytoplasm of both cell types appears vacuolized and contains very few organelles; scale bar = 4Æ9 lm. (b) A neutrophil (curved arrow)
adhering to the scolex microtriches with the presence of free mast cell granules (arrows) evident among the microtriches. The asterisk
denotes the scolex tegument; scale bar = 2Æ0 lm. (c) Micrograph showing the free granules of a neutrophil adhering to or in close vicinity
to the tegument of the scolex (asterisk); scale bar = 0Æ6 lm. (d) Degranulation of a mast cell is characterized by free electron-dense granules
(arrows) in close contact with the tegument of the scolex (asterisk); scale bar = 0Æ7 lm.
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semi-wild stocks is essential for Public Health Authority.
The pathological alterations to the intestine of cyprinids
due to cestodes have been detailed in several papers
(3,4,40). Among gross effects of tapeworms on fish hosts,
intestinal occlusion and rupture are infrequent and
extreme consequences of cestode infection (41). Such phe-
nomena are among the most serious impacts induced by
intestinal tapeworms, which have been associated with
debilitation, nutritional disturbance and even the death of
heavily parasitized fish (42).

Generally, infection of the gastrointestinal tract by para-
sites has detrimental effects on digestion function (5,7).
Most intestinal pathology associated with tapeworm infec-
tions results from the deep penetration of the scolex into
the gut wall (43). The organs used by intestinal helminths
during the process of attachment to their host’s gut fre-
quently induces inflammation of the alimentary canal
(5,10). This is the case in M. wageneri that induces marked
pathological changes, penetrating the muscularis layer (41,
current study), causing a significant inflammatory
response in all layers of the intestine in both light and
heavy infections.

M. wageneri is a caryophyllidean cestode and it was
reported that the tegumentary glands of this group of
tapeworms release neutral glycoproteins which protect the
parasite against host cellular responses (44). This interpre-
tation, however, does not appear plausible given that no
discharge from these glands nor the presence of an
adhesive layer between the tench intestine and M. wageneri
was evident in the material studied here. The presence of
abundant immune cells at the site of M. wageneri attach-
ment and presence of free granules discharged from MCs
and neutrophils in close contact with the scolex micro-
triches rule out earlier interpretations (44).

Rodlet cells (23) and two type of granulocytes, MCs
(23,24,30,45) and neutrophils (20,31), have been repeatedly
shown to play an essential role in the immune system of
fish. There is therefore a growing interest regarding the
role of these inflammatory cells in the innate immune sys-
tem of fish (21). Granulocytes are generally considered
effector cells of the innate immune response (46). The
importance of each of these cell types (i.e. RCs, MCs and
neutrophils) therefore is worth considering in the context
of the current study.

Recent studies on both wild and farmed fish suggest
that RCs represent an immune cell type closely linked to
other piscine inflammatory cells (45,47). RCs are found
exclusively in fish in a wide range of tissues and are com-
monly associated with epithelia (23). As M. wageneri
destroys the epithelia at the site of attachment, it was not
possible to compare the number of RCs in uninfected and
parasitized tench. The presence of RCs in the intestinal

submucosa of infected tench and those in direct contact
with the blood vessels is interesting and suggests that RCs
also use the circulatory system to migrate to the site of
infection. Similar findings have been reported for fish that
were infected with acanthocephalans (10,48).

Fish MCs, also known as eosinophilic granule cells,
have cytochemical features, functional properties and tis-
sue locations that have led to the suggestion that they are
analogous to mammalian MCs (22,23,25). Several pub-
lished reports on the intratissue migratory nature of MCs
suggest that fish may have two populations of MCs, one
circulating and one resident, and that the presence of par-
asites induces the recruitment of MCs to the site of infec-
tion (25,28). The significantly higher number of MCs
found at the site of parasite attachment, when compared
to uninfected tench, in the current study supports similar
results reported for other fish–helminth systems (48).

In teleosts, considerable descriptive data exist showing
how MCs degranulate in response to a variety of known
degranulating agents (49) and pathogens (23,25,30). In
parasitized tench, an intense degranulation of MCs was
seen at the site of tapeworm infection, notably in the
immediate zone surrounding the scolex. It is likely that the
secretions produced by the MCs may have a role in
attracting other cell types (i.e. neutrophils) involved in the
inflammatory process, particularly during the period of
initial pathogen challenge (24,32). One study reported that
intra-epithelial MCs are present in low numbers in healthy
epithelium but then dramatically increase in number with
certain parasitic infections (50). In the current study, MCs,
in the intestines of parasitized tench, were frequently
observed among epithelial cells.

Neutrophils are among the first cell types to arrive at the
sites of inflammation and play a critical role in the teleost
innate immune defence system (31). In infected tench,
numerous neutrophils were observed to co-occur with MCs
in the submucosa at the sites of M. wageneri attachment. A
similar observation was found in the livers of minnows,
Phoxinus phoxinus (L.), infected with the nematode larvae
of Raphidascaris acus (Bloch, 1779) (17). The findings from
the current study suggest that the neutrophils appear to
have closer contact with the tegument of the cestode than
do the MCs. Neutrophils commonly co-occur with macro-
phages that readily engulf small extracellular pathogens,
such as viruses and bacteria (12), or parasites of a smaller
size, such as the migrating diplostomules of Diplostomum
spathaceum (Rudolphi, 1819), that can be killed by host
macrophages (51). No macrophages were encountered at
the sites of M. wageneri attachment in the current study
and as yet the reasons for their absence are unknown
and are open to conjecture. One possible interpretation
is that the size of M. wageneri, which can measure sev-
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eral centimetres in length, is too large to be effectively
engulfed by host macrophages. Based on the current
study, it appears that an infection of M. wageneri in
tench preferentially induces the recruitment of neutroph-
ils and MCs and, to a lesser degree, RCs.

There are several records of mammals infected by helm-
inths where the host cells (e.g. macrophages) were able to
kill trematode larvae (52) and ⁄ or eosinophils and neu-
trophils were able to kill adult and nematode larvae
(33,34,53). The mechanism by which these cells mediated
protection against helminth infection is that they are
recruited at the site of infection, where they surround the
worm and then adhere to the parasite’s body. The eosin-
ophils and neutrophils then degranulate on the cuticle of
nematodes (33,34,53), while the macrophages penetrate
the tegument of the trematode (52) inflicting damage that
ultimately results in the death of the parasite. The tight
clustering of M. wageneri and the deep penetration of
their scolices inflict severe mechanical damage to their
host’s intestine. The presence of this tapeworm in tench
induces an intense inflammatory response that results in
the migration and recruitment of RCs, neutrophils and
MCs to the site of infection and the subsequent degranu-

lation of cells, which release their contents into the zone
immediately next to the scolex tegument. No dead tape-
worms were encountered during dissection; nevertheless,
the roles of MCs and neutrophils as effectors of innate
immunity against histozoic parasites require further inves-
tigation (54). The findings from the current study agree
closely with the statement of Feist and Longshaw (9),
who said ‘In most instances, an evolutionary balance has
been achieved between the host and the parasite and
even when histopathology is evident, this is frequently
localised and does not unduly impair performance of the
affected organ. Examples include chronic inflammation,
granuloma formation and focal fibrosis’.
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